RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, MARCH 2022

FIRST YEAR [BATCH 2021-24]

COMPUTER SCIENCE (HONOURS) Paper : II [CC 2]

Time : 11 am – 1 pm

Date

: 10/03/2022

Group : A

Answer **any two** questions from question no. 1 to 3:

- 1.Design an S-R latch using only two NAND gates. Compare its forbidden state with that of S-R
latch designed with only two NOR gates.[1+1.5]
- What do you mean by Don't Care states? Compare them with permitted states and also discuss why sometimes it is necessary for getting most simplified logic functions. [1+1.5]
- 3. What is race-around and for which type of latches it is unavoidable? What method can be used to encounter race-around? [1.5+1]

Answer **any two** questions from question no. 4 to 6:

4. Using a single OR gate and few NOT gates to implement the AND function for two input Boolean variables. For the following logic circuit obtain the relation between input and output: [2+3]

5. Using T-type flip-flops and few logic gates design a circuit which is capable of dividing the clock frequency by 5. The following logic circuit uses a J-K flip-flop. There is one input J, and the output is Q. Find the output Q_{n+1} , after the clock pulse in terms of the input J and the output before the clock pulse Q_n . [3+2]

$$F(A_3, A_2, A_1, A_0) = A_2 \cdot \overline{A_1} \cdot A_0 + A_3 \cdot \overline{A_2} \cdot \overline{A_0} + \overline{A_3} \cdot A_0$$

Answer **any one** question from question no. 7 and 8:

7. a) Compare Ring Counter and Johnson Counter. Why these types of counters are designed with D flip-flops instead of using T flip-flops? [2+2]

Full Marks : 50

[2×2.5]

[2×5]

[1×10]

	b)	"Synchronous counters are working in synchronisation with external clock p asynchronous courters are not. That means asynchronous counters do not need an clock pulses." – is this true? Explain your answer in brief.	oulses, but ny external [2]	
	c)	Design a Mod-6 asynchronous counter which have both of UP and DOWN count facil	ity. [4]	
8.	a)	Use Adder Chip (IC 7483 or 74283) for converting any single digit BCD corresponding 10's complement.	number to [2]	
	b)	Use Adder Chips (IC 7483 or 74283) for designing a circuit which is capable of perf complement addition and subtraction of two four bit numbers. Discuss the working of in details.	orming 2's f the circuit [2+4]	
	c)	Design a comparator circuit using IC 7485 which can check a given four bit numb BCD or not.	ber is valid [2]	
		<u>Group :B</u>		
Ans	swer	any two questions from question no. 9 to 11:	[2×2.5]	
9.		What is tri-state device? Explain the working principle with a suitable block diagram.	[1+1.5]	
10.		What do you mean by flag registers? Write down functions of flag registers.	[1+1.5]	
11.		Write down the differences between SRAM and DRAM.		
An	swer	any two questions from question no. 12 to 14:	[2×5]	
12.		Discuss Von-Neumann architecture with a suitable diagram.	[5]	
13.	a)	Explain I/O operation of DMA with a suitable block diagram.		
	b)	What do you mean by cache-hit and cache-miss.	[3+2]	
14.		Why do we need ADC and DAC? Draw a Weighted-Resistor type DAC which can c bit digital data to equivalent analog signal. If the resistance connected at the LSB term $K\Omega$, then find the resistance to be connected at the MSB terminal of that 6-bit DAC.	onvert a 6- 11 11 15 100 [2+2+1]	
Answer any one question from question no. 15 and 16: [1×10]				
15.	a)	Write down the differences between the followings:		
	i)	Hardwired and microprogrammed control unit		
	ii)	Horizontal and vertical microinstruction		
	iii)	RISC and CISC		
	b)	Explain displacement addressing mode.	[(2+2+3)+3]	
16.	a)	Define the followings:		
	i)	Direct access		
	ii)	Access time		
	iii)	Transfer rate		
	b)	Explain direct mapping technique with a suitable block diagram.		
	c)	How would you justify the importance of pipelining?		
	d)	Write down different bus arbitration mechanisms.	(1+1+1)+3+2+2]	
		X		

[2]